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Abstract-A special method of analysis, hereafter referred to as "Direct Analysis", is described and applied to
the solution ofthe problem of traveling flexural waves in beams and plates, for which shear correction and rotatory
inertia are considered. Finite beams and plates are considered so that the influence of reflected waves is included.
The proper boundary conditions for these problems, several input stress pulses, as well as the effect of the length
of the bounded medium (beam or plate) on the magnitude of the stress are considered. Implications to design
of structures are discussed. The characteristic features of the Direct Analysis are then presented.

NOTATION

A cross-sectional area
t Ai cross-sectional area which contributes to dynamic inertia

A, cross-sectional area which contributes resistance to shearing
Cp plate velocity = [E/p(l-v2W
C, dilatational wave velocity in a beam = [Elb/pl.Jt
C2 shear wave velocity in a beam = [A,G/pA.J t

C2 shear wave velocity in a plate = [G/p]t
D flexural rigidity of plate = Eh 3/12(1- v2 )

E modulus of elasticity
G modulus of rigidity = E/2(1 +v)
h plate thickness
I cross-sectional moment of inertia
I b moment of inertia which contributes resistance to bending
Ii moment of inertia which contributes resistance to dynamic inertia
j superscript referring to quantities of the jth cell
jm number of elements (cells) into which beam or plate is divided
k time for ramp to reach its maximum value
km number of time intervals
k, shear correction factor for beam
k2 shear correction factor for plate
I length of beam
M internal bending moment
M, radial bending moment per unit length
M9 tangential bending moment per unit length
Q, transverse shear force per unit length
q intensity of distributed external load on beam
r radial distance along plate

* Formerly at: Department of Engineering Mechanics, Pennsylvania State University.
t In this work subscripts are used as identifying symbols while superscripts indicate indices in the Direct

Analysis.

643



644 HERBERT A. KOENIG and NORMAN DAVIDS

r 0 inner radius of plate
rj outer radius of plate
SB slope of the deflection curve of a beam when shearing force is neglected
Ss slope of deflection curve due to shear
t time
V vertical shear force on a cross-section of the beam
v velocity of deflection in a beam or plate, y, or WI' respectively
W transverse displacement of the midplane of plate
x coordinate along length of beam
y deflection of beam
fJ angle of shear, measured at the neutral axis of a beam
ey total slope of the deflection curve of the beam
eo; angular strain of an element of the beam
£., angular strain of an element of the plate
(J tangential direction
v Poisson's ratio
p density of the material of beam or plate
4> rotation of the cross-section of the plate about the tangential axis
1/1 slope of the deflection curve of a beam when shearing force is neglected
(l) angular velocity of rotation of an element of the beam or plate, 1/1, or 4>" respectively

1. INTRODUCTION

TIus paper treats the problem of traveling flexural stress waves in a finite beam and plate.
By a traveling wave, we mean a disturbance (discontinuity in a function or its derivatives)
which travels along the length of the medium without essential loss in shape. This dis­
turbance travels at a constant speed in an elastic medium and its effects are felt by a
stationary observer only after the arrival of the wave front. It has been shown [1] that in
a problem dealing with flexural waves two distinct waves are generated regardless of the
input pulse. This condition complicates the classical idea ofa traveling wave since a coupling
of the two waves occurs.

This work attempts to contribute a further understanding of these questions by solving
problems of bounded media, Le. media in which reflections are considered. As will be
shown, the reflections considered in these problems give rise to far greater stresses than
those encountered in semi-infinite media. For this reason, the latter analyses fall short in
their applicability to problems of design.

Transverse and flexural impacts of beams and plates have long been recognized as
problems of practical significance and importance. Several methods of solution have been
investigated, such as Laplace Transforms and the method of characteristics. Mindlin [2]
compared the elementary Euler-Bernoulli theory with the exact theory and with the
Timoshenko beam theory. He pointed out that the shear correction, when applied in the
Timoshenko theory, plays the largest single role in allowing the results of this theory to
approach the results of the exact theory. Boley [3] and Dengler [4] used the Laplace Trans­
form method to solve several boundary value problems using the Timoshenko beam
theory. Miklowitz [5J and Lubkin [6J used this method in solving for the stresses in an
infinite elastic plate due to a suddenly applied transverse load. Jahsman [7J applied the
method of characteristics to the Uflyand-Mindlin equations of motion for a thin elastic
plate. He derived the physical characteristics and characteristic equations. Leonard and
Budiansky [8] successfully applied the method of characteristics to the Timoshenko beam
equations. While their solutions are based on the assumption of equal wave velocities,
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they clearly show the nature of flexural waves. Chou [9, 10] successfully applied the method
ofcharacteristics to the solution of flexural stress wave problems in a semi-infinite circular
plate due to several types of impulse loadings.

Recently, Kelly [11] analyzed wave propagation effects on a Timoshenko beam for
the purpose of estimating initial deceleration for a mass impact.

The method of analysis employed herein is the Direct Analysis which has been success­
fully employed by Davids [12], Mehta [13J and Davids [14, 15J in the solution of problems
of cylindrical and spherical elastic and elastoplastic waves as well as problems such as
those that are treated in this work. This method is extended herein to include a technique
which treats the coupling of the two waves arising as a result of a transverse impact on a
beam or plate.

A numerical technique, similar to Direct Analysis, known as Finite Element Analysis
has been extensively studied by J. H. Argyris (Imperial College) and O. C. Zienkiewicz
(Swansea). In addition, J. R. H. Otter [16] has recently developed a numerical technique
known as Dynamic Relaxation which is related to Finite Element Analysis.

The beam and plate are treated in this paper in a unified manner since the basic nature
of their governing equations is similar.

2. STATEMENT OF THE PROBLEM
2.1 Physical laws

The assumptions which are necessary to derive the physical laws relating to the
Timoshenko beam may be found in [17]. Analogous assumptions are used for the circular
plate.
2.1.1 Timoshenko beam. We begin our analysis by dividing the length of the beam into jm
elements of equal length dx. The equations of motion for the Timoshenko beam may be
obtained by applying the impulse-momentum laws to a typical jth element of the beam
(Fig. 1), viz

Rotation of the jth element

Translation of the jth element

(Vj
+ t - Vj+qdx)dt

dv = -----=----
pAidx

FIG. l. Free-body diagram of beam element (typical jth element).

(1)

(2)



646 HERBERT A. KOENIG and NORMAN DAVIDS

The constitutive relations for the Timoshenko beam may be obtained upon consider­
ation of the deformations of a typical beam element (Fig. 2).

FIG. 2. Deformations of an element of beam.

where

v = AsG{ey-t/l}

M = -EIb{e",}

ey = (yi+ t - yi)/dx

e", = (t/li+ 1 - t/li)/dx

(3)

(4)

(3a)

(4a)

The dilatation wave velocity C1 with which discontinuities in ro and M, as well as
discontinuities in their higher derivatives, propagate may be shown to be [8J

C1 = (EIb)! (5)
pI;

Similarly, the shear wave velocity C2 with which discontinuities in v and V, as well as
discontinuities in their higher derivatives, propagate may be shown to be

C2 = (AsG)! (6)
pA;

Any input to the beam which causes it to undergo a flexural mode of motion immediately
produces waves of both velocities C1 and C2 • This means that even a step moment input to
the beam, for example, produces two traveling waves which propagate from the point of·
impact. The magnitudes of these velocities are seen to be constant.

It may be shown [8J that a discontinuity in a moment (step moment pulse) produces a
discontinuity in M and ro, These discontinuities travel along the length of the beam at Cl'

In addition, this input produces discontinuities in higher derivatives of v and V which
travel at C2 • There are no discontinuities in the values of v and Vthemselves when a step
moment is applied at the end ofa beam. Thus, a discontinuity in a quantity that is generated
across one wave front immediately generates a discontinuity in a higher derivative of the
quantities associated with the opposite wave. In this way, the coupling of all physical
quantities becomes apparent. The fact that coupling exists is also apparent from the
equations (lH4).
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2.1.2 Circular plate with shear correction and rotatory inertia. The assumptions necessary
to derive the physical laws of the circular elastic plate in which shear correction and
rotary inertia are considered are analogous to those used in the beam derivations above.

de

rj

FIG. 3. Free-body diagram of plate element (typical jth element).

In a similar manner as above, the plate is divided into j cells (Fig. 3). The equations
of motion become

Rotation of a jth cell

dw = {M!+ l(ri +dr)-riM!-M6 dr-1(riQ! dr+ [ri+dr]Q!+ 1 dr)} dt

(ph 3/12)(ri dr + dr2/2)

Translation of the jth cell

dv = [(ri +dr)Q!+l-riQtJdt
ph(rJ dr + dr2/2)

The constitutive relations are

Mr = D{e~ +~cP}

Me = D{~cP+ve~}

Qr = k~Gh{cP+ew}

where:

(7)

(8)

(9)

(10)

(11 )

(lOa)

(lla)
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The dilatation wave velocity Cp (also referred to as plate velocity) and the shear wave
velocity k2C'z are, respectively

Cp = [P(1 :v2)T
k2C'z = k{~T

where k~ may be expressed as [5]

k~ = O·76+0·3v.

(12)

(13)

(14)

2.2 Boundary conditions

In the problems which are solved in this work, the formulation of the boundary con­
ditions must be accomplished with the aid of the special assumptions of the Timoshenko
beam theory and the analogous assumptions ofthe shear corrected plate. In the Timoshenko
beam the total slope of an element is given by [17]

ST = SB+SS

Sy = t/J+p
(15)

For the problem solved herein, namely the cantilever beam, the appropriate boundary
conditions are

ylx=1 = 0

t/Jlx=l = SBlx=1 = 0

(16)

(17)

We note that equation (17) specifies that the so-called "bending slope" t/J is zero at
the fixed end. The total slope, however, is not zero as it would be in the simpler Euler­
Bernoulli theory. This condition occurs since the cross-section may undergo a "shear
rotation" at the fixed end of the beam. In our problem, it was convenient to express the
boundary conditions in terms of the linear and angular velocities, respectively

VIX=1 = Ytlx=l = 0 (18)

(19)

Analogous boundary conditions may be stated for the plate with its outer edge clamped,
viz.

vl,=" = wtl,=" = 0

wl'='l = cPtl,=" = 0

(20)

(21)

Relations (IH6) along with equations (18) and (19) are a complete statement of the
problem of the traveling flexural stress waves in a cantilever beam. Relations (7H14) in
addition to equations (20) and (21) formulate the analogous problem for the plate. These
relations may be used directly in a computer code.
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3. DIRECT ANALYSIS OF A CANTILEVER BEAM
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The Direct Analysis formulation will now be presented for the cantilever beam. For
the sake of brevity, a similar analysis for the circular plate will be omitted here because it
is entirely analogous.

The Direct Analysis is a numerical method of solution which bypasses the derivation
and use of differential equations as unnecessary steps in solving the problem under con­
sideration. Instead, the actual statements of the governing physical laws are essentially all
that is necessary to effect a solution. These laws are applied directly to a finite system of
elements. It must be pointed out here that Direct Analysis is not a form of the numerical
procedure known as "finite-differences". In the latter, a governing differential equation is
first derived by mathematical techniques and only then is the numerical "finite-difference"
method applied. The physical laws (impulse-momentum, constitutive relations) remain in
their original form in this analysis.

The analysis is begun by dividing the medium under consideration, e.g. beam or plate,
into a finite number of cells. The time increment is determined from dt = dx/C, [18] where
C is the dilatational wave velocity for the problem under consideration. The cell size is
thus arbitrary and is varied until any reduction in this quantity will not yield any significant
change in the resulting solution of the problem.

Sequential summary of the direct analysis for a cantilever beam

(i) Specify given data: M(t), V(t), p, E, I, v, dx, ks' km, Ii' Ib, Ai' q(t)

(ii) Define:
G = E/2(1 +v)

C1 = [EIb/pI;]t

C2 = [AsG/pA;]t

dt = dx/C1

jm = ljdx

(iii) Pulse inputs

M(O, t) = M(t)

V(O, t) = V(t)

q = q(t)

(iv) Propagation procedure (dilatation wave): j = 1,2, ... ,jm

de.; = (wi + 1 - wi) dt/dx

dM = -EIbde",

(Mi+ 1 )' = Mi+ 1 +dM*

(22a)

(22b)

(22c)

(22d)

(22e)

(22f)

(22g)

(23a)

(23b)

(23c)

(24a)

(24b)

(24c)

* Relation (24c) and succeeding ones of the same form are cumulation operations which add the incremental
quantity to the value of the variable which previously exists.
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(t/Ji), = t/Ji +oJ dt

[i(yi + yi+ 1) dx+Mi -Mi+ 1] dt
dw = -----------­

plidx

(oJ)' = wi+dw

oJm+ 1 = 0

(24d)

(24e)

(24f)

(24g)

(v) Propagation procedure (shear wave):j = 1,2, ... ,jm

d6y = (vi+ 1 - vi) dt/dx

dY = AsG{d6y -oJ+l dt}

(yi+ 1), = yi+ 1 +dY

(I)' = .vi+vi dt

(yi+ 1 _yi+ q dx)dt
dv = ---------''--­

pAidx

Vim + 1 = 0

(vi) Increment time

(t)' = t+dt

(25a)

(25b)

(25c)

(25d)

(25e)

(25f)

(25g)

(26)

Repeat steps (iiiHvi) for a specified number of times km •

An entirely analogous analysis may be performed for the plate. We note that there is no
specific operation or expression which specifically deals with a forward or reflected
traveling wave i.e., these are not separately identified. If a step moment, for example, is
applied at cell 1, the solution obtained from the Direct Analysis shows a sharp wave front
traveling across the medium with the proper velocity. The conditions (24g) and (25g) at
the terminal cell are sufficient to generate a reflected wave. This reflected wave then pro­
pagates in the reverse direction and is superimposed on the incident wave.

4. DISCUSSION OF RESULTS

The Direct Analysis is applied to several problems and the accuracy of the solution is
checked in the case of the ramp moment input to a circular plate with its outer edge clamped.
The problems solved herein are

(A) Ramp Moment on Beam-l = 1·5 in.
(B) Step Moment on Beam-l = 1·5 in.
(C) Step Moment on Beam-l = 3·0 in.
(D) Ramp Shear on Beam-l = 1·5 in.
(E) Static Solution for Moment Input to Beam-l = 2·0 in.
(F) Ramp Moment on Plate-ro = 0·25 in., r, = 0·85 in.
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Unless otherwise specified, the constants used in these solutions are

Beam: E = 30 x 106 1b/in2
, v = 0'3, y = gp = 0'3001b/in3

A = 1·00 in 2
, k. = 0'833, lbll; = 1'0

Plate: E = 28 X 106 Ib/in2
, v = 0'3, y = gp = 0'2861b/in3

h = 0·125 in.
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The solutions presented herein are shown to demonstrate the generality of the present
technique and the behavior ofreflected traveling wave solutions. Parameters such as length
and area are inputs to the analysis and thus may be of any value which is consistent with
the problem under consideration. The particular numerical dimensions used were chosen
to illustrate the technique of analysis only.

(A) Ramp moment input to a cantilever beam-l = 1'5 in.

Figures 4 and 5, respectively, show the internal bending moment and shear that are
induced at position x = 0·5 in. by a ramp moment input at x = O. The rise time of the ramp
is given by k = 5·174 flsec as shown. The discontinuities in the derivatives of the moment
(Fig. 4) at t = 8 flsec and at t = 13 flsec are the manifestations of the discontinuity in the
derivative of the input pulse. If the beam were semi-infinite in length, the bending moment,
after reaching its initial maximum, would decay and approach the static value of 1. However,
the wave front which is reflected from the fixed end of the cantilever beam arrives at
x = 0·5 in. at t = 13 flsec. After this time, the value of the moment is seen to oscillate with
a large amplitude. At t = 42 flsec, the value of the moment is seen to be considerably higher
than that at t = 15 flsec. This phenomenon clearly shows that the effects of the reflections
are to increase the level of the stresses. For this reason, reflections must be considered in
order to obtain accurate design data for the stresses. This observation is even more vividly
demonstrated in Fig. 5. The static solution for this problem demands that the shear force V
approach zero. If the medium were semi-infinite in length, this would indeed be the case.
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FIG. 4. Bending moment, M, vs. time, t; x = (}5 in.
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FIG. 5. Shear, V, vs. time, t; x = 0·5 in.

However, the reflected waves cause the shear to take on values other than zero as time
increases.

(B) Step moment input to a cantilever beam-l = 1·5 in.

The moment and shear shown in Figs. 6 and 7, respectively, are induced at x = 0·5 in.
byastepmomentinputatx = O. The discontinuities in the moment curve shown att = 2'59,
13, 18'18, ... jlsec, depict, respectively, the effects of the arrival of the outward-going wave
front and its successive reflections. This case is more severe than the ramp moment. One
may clearly see that the effect of reflections on the magnitude of the moment is to produce
spikes. For example, as one may see from Fig. 6, the moment dynamic intensification
factor MdynlMSlal = 2·24 for the cantilever beam under consideration. If the beam were
semi-infinite in length the moment dynamic intensification factor would be 1·15. In addition,
one may note that several reflections were required before this peak moment value was
attained. Thus, in problems relating to traveling stress waves, several reflected wave fronts
must be observed before an estimate of the maximum stress levels in a medium can be
obtained. These delays in the maximum stress levels are due to the dispersion in the medium.
It is again worthwhile to note the importance ofconsidering a bounded medium as opposed
to a semi-infinite one.

(C) Step moment input to a cantilever beam-l = 3·0 in.

In order to study how the length of the beam affects the dynamic behavior of the
moments and shears, a beam length of 3 in. was investigated. This is twice the length used
in the previous case. In Figs. 8 and 9, the moment and shear, respectively are shown for this
configuration. The position where these variables were monitored was x = 0·5 in. as in
the previous cases. One notes that the moment and shear are approaching their static
values of 1 and 0, respectively, until the time of arrival of the reflected wave front. Upon
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FIG. 6. Bending moment, M, vs. time, t; x = 0·5 in.
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FIG. 7. Shear, V, vs. time, t; x = 0·5 in.

comparing the moment and shear of this problem with those of the preceding problem,
one notes that the increase of beam length has the effect of reducing the severity of the
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FIG. 9. Shear, V, vs. time, t; x = 0·5 in.

stress levels. This is as expected since, if I approaches infinity, the maximum bending
moment would occur at 10 tlsec and, thereafter, approach its static value. Thus, one notes
that dynamic intensification factors of the beam are functions of the length. The solution
which would be obtained for this problem, were the beam semi-infinite in length, is shown
by the dotted line in Fig. 8. One immediately notices that the stress levels predicted by the
latter configuration would be in error.
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(0) Ramp shear on beam-l = 1'5 in.

Figures 10 and 11, respectively, show the bending moment and shear force at x = 0·5 in.
for a ramp shear input to a cantilever beam oflength I = 1·5 in. One may particularly note
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FIG. 10. Bending moment, M, vs. time, t; x = 0·5 in.
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the dynamic behavior of the shear force. When the beam is impacted by the ramp shear,
both a dilatation and a shear wave are generated. Upon arrival of the dilatation wave at
x = 0·5 in., the shear force commences to become negative even though an impulse of
+ 1·0 is input at x = O. When the shear wave arrives, the shear force becomes positive
as required by the input pulse. Due to the necessity of computational accuracy in this
problem, a smaller mesh size was necessary than in the previous problems. For this reason,
the solution was only carried out to t = 25 /lsec which was considered most efficient. The
solution may, however, be carried out to any arbitrary time.

(E) Static solution for moment input to a cantilever beam-l = 2·0 in.

Figures 12 and 13, respectively, show the moment and shear that are induced at positions
x = 0·5 in. and x = 1·5 in. when a ramp moment input is applied to a cantilever beam of
length 2 in. The rise time of the ramp is to·34 /lsec. In this problem, however, the angular
and linear velocities, respectively, are exponentially damped so that a static solution may
be obtained, viz

w = woe-I!t l

v = voe- l !t2

where 1" 1 and 1:2 are arbitrary damping constants. In this problem 1"1 = 1"2 = 1·2 X 10- 5 sec
was used. One may note that the static values of 1 and 0 for the moment and shear, respec­
tively, are obtained as time increases. Points A and Bindicate the time at which the moment
at positions x = 0·5 in. and x 1'5 in., respectively, reach their static values to two decimal
places. Since these times are dependent upon the values of 1" 1 and 1" 2 they are not significant.
The important point to consider is the fact that this solution was obtaIned with the identical
formulation and analysis as all the other solutions in this paper. It is generally not possible
to attain both the static and the dynamic solutions ofa problem with many other techniques
of solution. A further point to consider is the fact that the static solution obtained in this
way provides the deflection and rotation with the shear contribution to these values present.
In elementary textbooks, the shear contribution to the deflection and rotation of a beam is
usually disregarded since its inclusion provides great difficulties in the analysis. Ifexperimen­
tal results were available for the values of the damping constants 1" 1 and 1:2, they could be
inserted into the analysis. This would then yield a dynamic behavior which would closely
approximate the actual physical behavior of the medium. Conversely, if the dynamic
behavior ofthe beam were known, our analysis could be used to test for compatible values
of these constants.

(F) Ramp moment on plate-ro = 0·25 in., rl = 0'85 in.

Figures 14 and 15 show the radial moment and transverse shear, respectively that are
induced at r 0·375 in. by a ramp moment of k = 1'227/lsec that is applied at the inner
edge of a circular plate whose outer edge is clamped. One again notes that the effect of the
outer boundary is to increase the moments and the shear because of its reflection capability.
This solution is compared (large points) with a similar one for a ramp moment input to a
circular plate which is semi-infinite in length. The solution to the latter problem had
previously been accomplished by the method of characteristics [9). In the characteristics
solution a mesh size of dr = 0·003125 in. was used. A larger mesh size for this problem
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with the method of characteristics produces an inaccurate solution. Only upon reducing
the mesh size to 0·003125 in. does that solution converge to one with proper accuracy.
However, the mesh size used in the Direct Analysis to obtain this solution was dr = 0·0125 in.
which is four times as coarse. The mesh size of the Direct Analysis solution was also varied
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until satisfactory convergence was obtained with dr = 0·0125 in. Thus, for this problem,
the Direct Analysis may be seen to be more efficient.
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The reason that the Finite Element Analysis tends to be more accurate than the method
of characteristics for this class of problems is that in the latter technique finite-difference
"averaging" of the dynamic quantities is necessary to numerically integrate the characteris­
tic equations. No such averaging is necessary with the present technique.

Error accumulation, which is a difficulty in any numerical method, was negligible in
the problems solved in this work. This remains the case until an excessive number of time
increments are employed. For example, in a problem previously solved by the Direct
Analysis, errors become evident only after 600 jlsec. The time interval in that problem was
i jlsec. Thus, only after 2400 time intervals did errors begin to become evident. Since, in
problems of flexural impact, the critical dynamic history generally occurs in less than
100 jlsec, error accumulation does not appear to be a significant problem within the scope
of this analysis. If longer time intervals are required for a problem, it is generally better
to use a technique other than a wave approach.

In this work, comparison has been made with other partial solutions developed by
numerical techniques. A comparison ofour solutions with those which have been developed
from exact analyses is given in [15].

Additional solutions to problems of the flexural traveling waves in beams and plates
which are finite in length may be found in [14] and [15]. A more detailed presentation of the
Direct Analysis of the plate is also given in [14). The Direct Analysis presented herein has
been developed into a computer code in order to obtain the solutions presented above.
The solutions were obtained on the IBM 7074 Digital Computer at The Pennsylvania
State University Computation Center.

5. CONCLUSIONS

The Direct Analysis as applied to a beam or plate in which shear deformation and
rotatory inertia have been considered exhibits the following features:

(a) A bounded medium, i.e. one in which reflections are considered, offers no additional
complexity than a non-bounded (semi-infinite) one. Reflections automatically
occur upon statement of the proper boundary conditions.

(b) The solution of a problem in which boundaries and damping are present closely
approximates the actual physical conditions and gives more realistic results than
the solution of a semi-infinite medium. In this manner realistic design data and
criteria may be obtained.

(c) The static solution to any of the problems which are illustrated has been obtained
by damping both the angular and linear velocities until they vanish as explained
above. This damping formulation is inserted in addition to the impulse-momentum
laws. In this manner both the dynamic (r --. (0) and the static solutions may be
obtained. This may further be viewed as an alternate means of obtaining a static
solution. This procedure of obtaining a static solution has the advantage over many
of the procedures employing mathematical solutions since in the latter, dynamic
and static analyses must be undertaken separately.

(d) The size of the cell required for an accurate solution is, in general, far coarser than
that required with other numerical techniques. This observation is based on past
and present work involving the Direct Analysis. (See for example, [12-15]). As has
previously been shown for the ramp moment input to the plate, the present method
achieved the same result for this problem with coarser mesh than other methods.
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A6cTpaKT-l1"ccne,ll.yeTcH cllelUlanbHbIil. MeTO.u aHanH3a, Ha3BaHHOrO B .uaHHOM cny'lae "npOCTbIM MeTO­
,lI.OM", IlpHMeHHMblM K pewe!'lHIO 3a,ll.a'lH cTpaHcTBylOIlI.Hx H3rH6HbIx BonH B 6anKax H nnaCTHHKax, MH
KOTOPblX Y'lHTbIBaeTcH rrorrpaBKa OT c.uBHra H MOMeHTbI BpaIll.eHHH. l1"ccne.zxyIOTcH KOHe'lHble 6anKH H
rrnaCTHHKH, H 1l0JTOMy y'lHTHBaeTCH BnHHHHe OTpallCeHHbIx BonH. PacCMaTpHBaIOTCH COOTBeTCTBylOIlI.He
rpaHH'lHbIe ycnoBHH JTHX 3a,ll.a'l, OT.ueJlbHbIe Bxo.uHble HMIIYJlbCbI HarrpHlICeHHil., a TaKlICe Jli>«IJeKT MHHbl
OrpaHH'IeHOrO TeJla /6aJlKa HJlH I1J1aCTHHKa/ Ha BeJlH'lHHY HaIlpHlICeHHil.. 06cYllC.uaIOTcH rrpHMeHeHHH MeTo.ua
K pac'IeTy KOHCTPYKIlHil.. npHBO,ll.HTCH xapaKTepHCTH'IecKHe .ueTanH "npocToro MeTO,ll.a".


